Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
2.
Front Immunol ; 13: 999693, 2022.
Article in English | MEDLINE | ID: covidwho-2326746

ABSTRACT

Introduction: Humoral immunity after SARS-CoV-2 vaccination has been extensively investigated in blood. Aim of this study was to develop an ELISA method in order to determine the prevalence of IgG and IgA SARS-CoV-2 domain 1 spike-protein (S) specific antibodies (Abs) in buccal and nasal mucosal surfaces of vaccinees. Methods: To this end, we analyzed 69 individuals who received their first vaccine dose between February and July 2021. Vaccines administered were BNT162b2, mRNA-1273 or ChAdOx1-nCoV-19. Detection of IgG and IgA Abs was performed using commercial ELISA kits for both blood and swab samples after protocol modification for the latter. Results: Anti-spike IgG and IgA Abs in the buccal and/or nasal swabs were detectable in >81% of the study subjects after the second dose. The IgG measurements in buccal swabs appeared to correlate in a more consistent way with the respective measurements in blood with a correlation coefficient of r=0.74. It is of note that IgA Abs appeared to be significantly more prevalent in the nasal compared to the buccal mucosa. Optimal selection of the assay cut-off for the IgG antibody detection in buccal swabs conferred a sensitivity of 91.8% and a specificity of 100%. Last, individuals vaccinated with mRNA-based vaccines exhibited higher antibody levels in both blood and mucosal surfaces compared to those receiving ChAdOx1-nCoV-19 confirming previously reported results. Conclusion: In conclusion, our findings show a differential prevalence of anti-S Abs on mucosal surfaces after vaccination for SARS-CoV-2, while they also set the basis for potential future use of IgG antibody detection in buccal swabs for extended immunity screening in large populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , BNT162 Vaccine , COVID-19 Vaccines , COVID-19/prevention & control , Nasal Mucosa , Vaccination , Immunoglobulin A , Immunoglobulin G
3.
Sci Rep ; 13(1): 6592, 2023 04 21.
Article in English | MEDLINE | ID: covidwho-2304856

ABSTRACT

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common upper respiratory tract complication where the pathogenesis is largely unknown. Herein, we investigated the transcriptome profile in nasal mucosa biopsies of CRSwNP patients and healthy individuals. We further integrated the transcriptomics data with genes located in chromosomal regions containing genome-wide significant gene variants for COVID-19. Among the most significantly upregulated genes in polyp mucosa were CCL18, CLEC4G, CCL13 and SLC9A3. Pathways involving "Ciliated epithelial cells" were the most differentially expressed molecular pathways when polyp mucosa and non-polyp mucosa from the same patient was compared. Natural killer T-cell (NKT) and viral pathways were the most statistically significant pathways in the mucosa of CRSwNP patients compared with those of healthy control individuals. Upregulated genes in polyp mucosa, located within the genome-wide associated regions of COVID-19, included LZTFL1, CCR9, SLC6A20, IFNAR1, IFNAR2 and IL10RB. Interestingly, the second most over-expressed gene in our study, CLEC4G, has been shown to bind directly to SARS-CoV-2 spike's N-terminal domain and mediate its entry and infection. Our results on altered expression of genes related to cilia and viruses point to the de-regulation of viral defenses in CRSwNP patients, and may give clues to future intervention strategies.


Subject(s)
COVID-19 , Nasal Polyps , Rhinitis , Sinusitis , Humans , Rhinitis/complications , Rhinitis/genetics , Rhinitis/metabolism , Nasal Polyps/complications , Nasal Polyps/genetics , Nasal Polyps/metabolism , Transcriptome , Cilia/metabolism , COVID-19/complications , COVID-19/genetics , COVID-19/metabolism , SARS-CoV-2/genetics , Nasal Mucosa/metabolism , Sinusitis/complications , Sinusitis/genetics , Sinusitis/metabolism , Chronic Disease , Membrane Transport Proteins/metabolism
4.
Viruses ; 15(4)2023 03 31.
Article in English | MEDLINE | ID: covidwho-2293677

ABSTRACT

The nasal mucosa is the main gateway for entry, replication and elimination of the SARS-CoV-2 virus, the pathogen that causes severe acute respiratory syndrome (COVID-19). The presence of the virus in the epithelium causes damage to the nasal mucosa and compromises mucociliary clearance. The aim of this study was to investigate the presence of SARS-CoV-2 viral antigens in the nasal mucociliary mucosa of patients with a history of mild COVID-19 and persistent inflammatory rhinopathy. We evaluated eight adults without previous nasal diseases and with a history of COVID-19 and persistent olfactory dysfunction for more than 80 days after diagnosis of SARS-CoV-2 infection. Samples of the nasal mucosa were collected via brushing of the middle nasal concha. The detection of viral antigens was performed using immunofluorescence through confocal microscopy. Viral antigens were detected in the nasal mucosa of all patients. Persistent anosmia was observed in four patients. Our findings suggest that persistent SARS-CoV-2 antigens in the nasal mucosa of mild COVID-19 patients may lead to inflammatory rhinopathy and prolonged or relapsing anosmia. This study sheds light on the potential mechanisms underlying persistent symptoms of COVID-19 and highlights the importance of monitoring patients with persistent anosmia and nasal-related symptoms.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/complications , COVID-19/diagnosis , SARS-CoV-2 , Anosmia/diagnosis , Anosmia/etiology , COVID-19 Testing , Nasal Mucosa , Antigens, Viral
6.
Eur J Pharm Biopharm ; 184: 62-82, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2235648

ABSTRACT

The intranasal route has been receiving greater attention from the scientific community not only for systemic drug delivery but also for the treatment of pulmonary and neurological diseases. Along with it, drug transport and permeability studies across the nasal mucosa have exponentially increased. Nevertheless, the translation of data from in vitro cell lines to in vivo studies is not always reliable, due to the difficulty in generating an in vitro model that resembles respiratory human physiology. Among all currently available methodologies, the air-liquid interface (ALI) method is advantageous to promote cell differentiation and optimize the morphological and histological characteristics of airway epithelium cells. Cells grown under ALI conditions, in alternative to submerged conditions, appear to provide relevant input for inhalation and pulmonary toxicology and complement in vivo experiments. Different methodologies and a variety of materials have been used to induce ALI conditions in primary cells and numerous cell lines. Until this day, with only exploratory results, no consensus has been reached regarding the validation of the ALI method, hampering data comparison. The present review describes the most adequate cell models of airway epithelium and how these models are differently affected by ALI conditions. It includes the evaluation of cellular features before and after ALI, and the application of the method in primary cell cultures, commercial 3D primary cells, cell lines and stem-cell derived models. A variety of these models have been recently applied for pharmacological studies against severe acute respiratory syndrome-coronavirus(-2) SARS-CoV(-2), namely primary cultures with alveolar type II epithelium cells and organotypic 3D models. The herein compiled data suggest that ALI conditions must be optimized bearing in mind the type of cells (nasal, bronchial, alveolar), their origin and the objective of the study.


Subject(s)
Cell Culture Techniques , Respiratory Mucosa , Humans , Respiratory Mucosa/metabolism , Cell Line , Lung , Nasal Mucosa , Epithelial Cells/metabolism
7.
Cell Rep Med ; 4(1): 100882, 2023 01 17.
Article in English | MEDLINE | ID: covidwho-2211651

ABSTRACT

The nasal mucosa is an important initial site of host defense against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, intramuscularly administered vaccines typically do not achieve high antibody titers in the nasal mucosa. We measure anti-SARS-CoV-2 spike immunoglobulin G (IgG) and IgA in nasal epithelial lining fluid (NELF) following intramuscular vaccination of 3,058 participants from the immunogenicity substudy of a phase 3, double-blind, placebo-controlled study of AZD1222 vaccination (ClinicalTrials.gov: NCT04516746). IgG is detected in NELF collected 14 days following the first AZD1222 vaccination. IgG levels increase with a second vaccination and exceed pre-existing levels in baseline-SARS-CoV-2-seropositive participants. Nasal IgG responses are durable and display strong correlations with serum IgG, suggesting serum-to-NELF transudation. AZD1222 induces short-lived increases to pre-existing nasal IgA levels in baseline-seropositive vaccinees. Vaccinees display a robust recall IgG response upon breakthrough infection, with overall magnitudes unaffected by time between vaccination and illness. Mucosal responses correlate with reduced viral loads and shorter durations of viral shedding in saliva.


Subject(s)
COVID-19 , Humans , Antibody Formation , Breakthrough Infections , ChAdOx1 nCoV-19 , Immunoglobulin A , Immunoglobulin G , Nasal Mucosa , SARS-CoV-2 , Clinical Trials, Phase III as Topic , Double-Blind Method
8.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article in English | MEDLINE | ID: covidwho-2200318

ABSTRACT

The nasal-associated lymphoid tissues (NALT) are generally accepted as an immune induction site, but the activation of naïve T-cells in that compartment has not been well-characterized. I wanted to determine if early events in naïve CD4+ T cell activation and the extent of antigen specific cell division are similar in NALT to that observed in other secondary lymphoid compartments. I performed antigen tracking experiments and analyzed the activation of naïve antigen-specific CD4+ T cells in the nasal-associated lymphoid tissues (NALT). I directly observed transepithelial transport of fluorescently labeled antigen from the lumen of the airway to the interior of the NALT two hours following immunization. One day following intranasal (i.n.) immunization with antigen and adjuvant, antigen-specific CD4+ T cells in the NALT associated as clusters, while antigen-specific CD4+ T cells in control mice immunized with adjuvant only remained dispersed. The antigen-specific CD4+ populations in the NALT and cranial deep cervical lymph nodes of immunized mice expanded significantly by day three following immunization. These findings are consistent with initial activation of naïve CD4+ T cells in the NALT and offer insight into adjuvant mechanism of flagellin in the upper respiratory compartment.


Subject(s)
Flagellin , Lymphoid Tissue , Vaccines, Subunit , Animals , Mice , Adjuvants, Immunologic , Administration, Intranasal , CD4-Positive T-Lymphocytes , Flagellin/immunology , Immunization , Mice, Inbred BALB C , Nasal Mucosa , T-Lymphocytes , Vaccines, Subunit/immunology
9.
mBio ; 13(4): e0194422, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1986333

ABSTRACT

The human upper respiratory tract, specifically the nasopharyngeal epithelium, is the entry portal and primary infection site of respiratory viruses. Productive infection of SARS-CoV-2 in the nasal epithelium constitutes the cellular basis of viral pathogenesis and transmissibility. Yet a robust and well-characterized in vitro model of the nasal epithelium remained elusive. Here we report an organoid culture system of the nasal epithelium. We derived nasal organoids from easily accessible nasal epithelial cells with a perfect establishment rate. The derived nasal organoids were consecutively passaged for over 6 months. We then established differentiation protocols to generate 3-dimensional differentiated nasal organoids and organoid monolayers of 2-dimensional format that faithfully simulate the nasal epithelium. Moreover, when differentiated under a slightly acidic pH, the nasal organoid monolayers represented the optimal correlate of the native nasal epithelium for modeling the high infectivity of SARS-CoV-2, superior to all existing organoid models. Notably, the differentiated nasal organoid monolayers accurately recapitulated higher infectivity and replicative fitness of the Omicron variant than the prior variants. SARS-CoV-2, especially the more transmissible Delta and Omicron variants, destroyed ciliated cells and disassembled tight junctions, thereby facilitating virus spread and transmission. In conclusion, we establish a robust organoid culture system of the human nasal epithelium for modeling upper respiratory infections and provide a physiologically-relevant model for assessing the infectivity of SARS-CoV-2 emerging variants. IMPORTANCE An in vitro model of the nasal epithelium is imperative for understanding cell biology and virus-host interaction in the human upper respiratory tract. Here we report an organoid culture system of the nasal epithelium. Nasal organoids were derived from readily accessible nasal epithelial cells with perfect efficiency and stably expanded for more than 6 months. The long-term expandable nasal organoids were induced maturation into differentiated nasal organoids that morphologically and functionally simulate the nasal epithelium. The differentiated nasal organoids adequately recapitulated the higher infectivity and replicative fitness of SARS-CoV-2 emerging variants than the ancestral strain and revealed viral pathogenesis such as ciliary damage and tight junction disruption. Overall, we established a human nasal organoid culture system that enables a highly efficient reconstruction and stable expansion of the human nasal epithelium in culture plates, thus providing a facile and robust tool in the toolbox of microbiologists.


Subject(s)
COVID-19 , Nasal Mucosa , Organoids , SARS-CoV-2 , COVID-19/virology , Humans , Nasal Mucosa/virology , Organoids/virology , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Tissue Culture Techniques
10.
Viruses ; 14(8)2022 07 23.
Article in English | MEDLINE | ID: covidwho-1957457

ABSTRACT

Reinfection risk is a great concern with regard to the COVID-19 pandemic because a large proportion of the population has recovered from an initial infection, and previous reports found that primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques without viral presence and pathological injury; however, a high possibility for reinfection at the current stage of the pandemic has been proven. We found the reinfection of SARS-CoV-2 in Syrian hamsters with continuous viral shedding in the upper respiratory tracts and few injuries in the lung, and nasal mucosa was exploited by SARS-CoV-2 for replication and shedding during reinfection; meanwhile, no viral replication or enhanced damage was observed in the lower respiratory tracts. Consistent with the mild phenotype in the reinfection, increases in mRNA levels in cytokines and chemokines in the nasal mucosa but only slight increases in the lung were found. Notably, the high levels of neutralizing antibodies in serum could not prevent reinfection in hamsters but may play roles in benefitting the lung recovery and symptom relief of COVID-19. In summary, Syrian hamsters could be reinfected by SARS-CoV-2 with mild symptoms but with obvious viral shedding and replication, and both convalescent and vaccinated patients should be wary of the transmission and reinfection of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Disease Models, Animal , Humans , Macaca mulatta , Mesocricetus , Nasal Mucosa , Pandemics , Reinfection
11.
Nat Commun ; 13(1): 3357, 2022 06 10.
Article in English | MEDLINE | ID: covidwho-1947338

ABSTRACT

Vaccines against SARS-CoV-2 have shown high efficacy in clinical trials, yet a full immunologic characterization of these vaccines, particularly within the human upper respiratory tract, is less well known. Here, we enumerate and phenotype T cells in nasal mucosa and blood using flow cytometry before and after vaccination with the Pfizer-BioNTech COVID-19 vaccine (n = 21). Tissue-resident memory (Trm) CD8+ T cells expressing CD69+CD103+ increase in number ~12 days following the first and second doses, by 0.31 and 0.43 log10 cells per swab respectively (p = 0.058 and p = 0.009 in adjusted linear mixed models). CD69+CD103+CD8+ T cells in the blood decrease post-vaccination. Similar increases in nasal CD8+CD69+CD103- T cells are observed, particularly following the second dose. CD4+ cells co-expressing CCR6 and CD161 are also increased in abundance following both doses. Stimulation of nasal CD8+ T cells with SARS-CoV-2 spike peptides elevates expression of CD107a at 2- and 6-months (p = 0.0096) post second vaccine dose, with a subset of donors also expressing increased cytokines. These data suggest that nasal T cells may be induced and contribute to the protective immunity afforded by this vaccine.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , BNT162 Vaccine , CD4-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunologic Memory , NK Cell Lectin-Like Receptor Subfamily B/immunology , Nasal Mucosa , RNA, Messenger , Receptors, CCR6 , SARS-CoV-2 , Vaccination
12.
Sci Rep ; 12(1): 5680, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1931430

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the infectious disease COVID-19, which has rapidly become an international pandemic with significant impact on healthcare systems and the global economy. To assist antiviral therapy and vaccine development efforts, we performed a natural history/time course study of SARS-CoV-2 infection in ferrets to characterise and assess the suitability of this animal model. Ten ferrets of each sex were challenged intranasally with 4.64 × 104 TCID50 of SARS-CoV-2 isolate Australia/VIC01/2020 and monitored for clinical disease signs, viral shedding, and tissues collected post-mortem for histopathological and virological assessment at set intervals. We found that SARS-CoV-2 replicated in the upper respiratory tract of ferrets with consistent viral shedding in nasal wash samples and oral swab samples up until day 9. Infectious SARS-CoV-2 was recovered from nasal washes, oral swabs, nasal turbinates, pharynx, and olfactory bulb samples within 3-7 days post-challenge; however, only viral RNA was detected by qRT-PCR in samples collected from the trachea, lung, and parts of the gastrointestinal tract. Viral antigen was seen exclusively in nasal epithelium and associated sloughed cells and draining lymph nodes upon immunohistochemical staining. Due to the absence of clinical signs after viral challenge, our ferret model is appropriate for studying asymptomatic SARS-CoV-2 infections and most suitable for use in vaccine efficacy studies.


Subject(s)
COVID-19 , Ferrets , Animals , Nasal Mucosa , SARS-CoV-2 , Viral Load
13.
Proc Natl Acad Sci U S A ; 119(21): e2123208119, 2022 05 24.
Article in English | MEDLINE | ID: covidwho-1860508

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into humans in 2012, causing highly lethal respiratory disease. The severity of disease may be, in part, because MERS-CoV is adept at antagonizing early innate immune pathways­interferon (IFN) production and signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L)­activated in response to viral double-stranded RNA (dsRNA) generated during genome replication. This is in contrast to severe acute respiratory syndrome CoV-2 (SARS-CoV-2), which we recently reported to activate PKR and RNase L and, to some extent, IFN signaling. We previously found that MERS-CoV accessory proteins NS4a (dsRNA binding protein) and NS4b (phosphodiesterase) could weakly suppress these pathways, but ablation of each had minimal effect on virus replication. Here we investigated the antagonist effects of the conserved coronavirus endoribonuclease (EndoU), in combination with NS4a or NS4b. Inactivation of EndoU catalytic activity alone in a recombinant MERS-CoV caused little if any effect on activation of the innate immune pathways during infection. However, infection with recombinant viruses containing combined mutations with inactivation of EndoU and deletion of NS4a or inactivation of the NS4b phosphodiesterase promoted robust activation of dsRNA-induced innate immune pathways. This resulted in at least tenfold attenuation of replication in human lung­derived A549 and primary nasal cells. Furthermore, replication of these recombinant viruses could be rescued to the level of wild-type MERS-CoV by knockout of host immune mediators MAVS, PKR, or RNase L. Thus, EndoU and accessory proteins NS4a and NS4b together suppress dsRNA-induced innate immunity during MERS-CoV infection in order to optimize viral replication.


Subject(s)
COVID-19 , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Coronavirus Infections/immunology , Endoribonucleases/genetics , Endoribonucleases/metabolism , Epithelial Cells/metabolism , Humans , Immunity, Innate , Lung/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Nasal Mucosa , SARS-CoV-2/pathogenicity , Uridylate-Specific Endoribonucleases
14.
Eur J Immunol ; 52(8): 1308-1320, 2022 08.
Article in English | MEDLINE | ID: covidwho-1825936

ABSTRACT

Human nasal mucosa is susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and serves as a reservoir for viral replication before spreading to other organs (e.g. the lung and brain) and transmission to other individuals. Chronic rhinosinusitis (CRS) is a common respiratory tract disease and there is evidence suggesting that susceptibility to SARS-CoV-2 infection differs between the two known subtypes, eosinophilic CRS and non-ECRS (NECRS). However, the mechanism of SARS-CoV-2 infection in the human nasal mucosa and its association with CRS has not been experimentally validated. In this study, we investigated whether the human nasal mucosa is susceptible to SARS-CoV-2 infection and how different endotypes of CRS impact on viral infection and progression. Primary human nasal mucosa tissue culture revealed highly efficient SARS-CoV-2 viral infection and production, with particularly high susceptibility in the NECRS group. The gene expression differences suggested that human nasal mucosa is highly susceptible to SARS-CoV-2 infection, presumably due to an increase in ACE2-expressing cells and a deficiency in antiviral immune response, especially for NECRS. Importantly, patients with NECRS may be at a particularly high risk of viral infection and transmission, and therefore, close monitoring should be considered.


Subject(s)
COVID-19 , Rhinitis , Sinusitis , Chronic Disease , Humans , Nasal Mucosa/metabolism , Rhinitis/complications , Rhinitis/metabolism , SARS-CoV-2 , Sinusitis/complications , Sinusitis/metabolism
15.
Biomed Pharmacother ; 150: 113058, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1814160

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic with unprecedented economic and societal impact. Currently, several vaccines are available and multitudes of antiviral treatments have been proposed and tested. Although many of the vaccines show clinical efficacy, they are not equally accessible worldwide. Additionally, due to the continuous emergence of new variants and generally short duration of immunity, the development of effective antiviral treatments remains of the utmost importance. Since the emergence of SARS-CoV-2, substantial efforts have been undertaken to repurpose existing drugs for accelerated clinical testing and emergency use authorizations. However, drug-repurposing studies using cellular assays often identify hits that later prove ineffective clinically, highlighting the need for more complex screening models. To this end, we evaluated the activity of single compounds that have either been tested clinically or already undergone extensive preclinical profiling, using a standardized in vitro model of human nasal epithelium. Furthermore, we also evaluated drug combinations based on a sub-maximal concentration of molnupiravir. We report the antiviral activity of 95 single compounds and 30 combinations. We show that only a few single agents are highly effective in inhibiting SARS-CoV-2 replication while selected drug combinations containing 10 µM molnupiravir boosted antiviral activity compared to single compound treatment. These data indicate that molnupiravir-based combinations are worthy of further consideration as potential treatment strategies against coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cytidine/analogs & derivatives , Humans , Hydroxylamines , Nasal Mucosa , SARS-CoV-2
16.
Int J Mol Sci ; 23(7)2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1776253

ABSTRACT

The nasal epithelium is a key portal for infection by respiratory viruses such as SARS-CoV-2 and represents an important target for prophylactic and therapeutic interventions. In the present study, we test the safety and efficacy of a newly developed nasal spray (AM-301, marketed as Bentrio) against infection by SARS-CoV-2 and its Delta variant on an in vitro 3D-model of the primary human nasal airway epithelium. Safety was assessed in assays for tight junction integrity, cytotoxicity and cilia beating frequency. Efficacy against SARS-CoV-2 infection was evaluated in pre-viral load and post-viral load application on airway epithelium. No toxic effects of AM-301 on the nasal epithelium were found. Prophylactic treatment with AM-301 significantly reduced viral titer vs. controls over 4 days, reaching a maximum reduction of 99% in case of infection from the wild-type SARS-CoV-2 variant and more than 83% in case of the Delta variant. When AM-301 administration was started 24 h after infection, viral titer was reduced by about 12-folds and 3-folds on Day 4. The results suggest that AM-301 is safe and significantly decelerates SARS-CoV-2 replication in cell culture inhibition assays of prophylaxis (pre-viral load application) and mitigation (post-viral load application). Its physical (non-pharmaceutical) mechanism of action, safety and efficacy warrant additional investigations both in vitro and in vivo for safety and efficacy against a broad spectrum of airborne viruses and allergens.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Epithelium , Humans , Nasal Mucosa , Nasal Sprays
18.
Nature ; 603(7902): 706-714, 2022 03.
Article in English | MEDLINE | ID: covidwho-1764186

ABSTRACT

The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.


Subject(s)
COVID-19/pathology , COVID-19/virology , Membrane Fusion , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Virus Internalization , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cell Line , Cell Membrane/metabolism , Cell Membrane/virology , Chlorocebus aethiops , Convalescence , Female , Humans , Immune Sera/immunology , Intestines/pathology , Intestines/virology , Lung/pathology , Lung/virology , Male , Middle Aged , Mutation , Nasal Mucosa/pathology , Nasal Mucosa/virology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Tissue Culture Techniques , Virulence , Virus Replication
19.
Acta Otolaryngol ; 142(3-4): 329-332, 2022.
Article in English | MEDLINE | ID: covidwho-1740536

ABSTRACT

BACKGROUND: The impacts of coronavirus disease-2019 (COVID-19) on nasal mucociliary clearance (MCC) have shown conflicting results. OBJECTIVES: The aim of this study was to determine whether COVID-19 infections affect nasal mucociliary activity using the saccharin test to measure nasal MCC time. MATERIAL AND METHODS: This prospective comparative investigation included 25 patients with COVID-19 infection and 25 healthy controls. The nasal MCC time was assessed using the saccharin test. Saccharin test was applied to COVID-19 patients between the 10th and 20th days of COVID-19 test positivity. Patients admitted to the otolaryngology outpatient clinic with non-nasal symptoms and no history of COVID-19 infection served as the control subjects. RESULTS: Age, gender distribution, smoking, and alcohol usage, and the existence of other systemic disorders had no statistically significant differences between the groups (p = 0.25, p = 0.77, p = 1.00, p = 0.28, p = 0.54, respectively). The COVID-19 group had a mean nasal MCC time of 12.00 ± 2.51 min, compared to 9.77 ± 2.51 min in the control group. The nasal MCC time in the COVID-19 group was statistically significantly longer (p = 0.043). CONCLUSIONS AND SIGNIFICANCE: The COVID-19 infection negatively affects mucociliary activity and causes prolongation of MCC. As the nasal defense mechanism weakens in the early period after COVID-19 infection, susceptibility to respiratory infections may occur.


Subject(s)
COVID-19 , Mucociliary Clearance , Humans , Nasal Mucosa , Prospective Studies , Saccharin/pharmacology
20.
Environ Res ; 210: 112890, 2022 07.
Article in English | MEDLINE | ID: covidwho-1706308

ABSTRACT

Coronavirus Disease-19 (COVID-19) symptoms range from mild to severe illness; the cause for this differential response to infection remains unknown. Unravelling the immune mechanisms acting at different levels of the colonization process might be key to understand these differences. We carried out a multi-tissue (nasal, buccal and blood; n = 156) gene expression analysis of immune-related genes from patients affected by different COVID-19 severities, and healthy controls through the nCounter technology. Mild and asymptomatic cases showed a powerful innate antiviral response in nasal epithelium, characterized by activation of interferon (IFN) pathway and downstream cascades, successfully controlling the infection at local level. In contrast, weak macrophage/monocyte driven innate antiviral response and lack of IFN signalling activity were present in severe cases. Consequently, oral mucosa from severe patients showed signals of viral activity, cell arresting and viral dissemination to the lower respiratory tract, which ultimately could explain the exacerbated innate immune response and impaired adaptative immune responses observed at systemic level. Results from saliva transcriptome suggest that the buccal cavity might play a key role in SARS-CoV-2 infection and dissemination in patients with worse prognosis. Co-expression network analysis adds further support to these findings, by detecting modules specifically correlated with severity involved in the abovementioned biological routes; this analysis also provides new candidate genes that might be tested as biomarkers in future studies. We also found tissue specific severity-related signatures mainly represented by genes involved in the innate immune system and cytokine/chemokine signalling. Local immune response could be key to determine the course of the systemic response and thus COVID-19 severity. Our findings provide a framework to investigate severity host gene biomarkers and pathways that might be relevant to diagnosis, prognosis, and therapy.


Subject(s)
COVID-19 , Antiviral Agents , Biomarkers , COVID-19/genetics , Gene Expression Profiling/methods , Humans , Immunity, Innate/genetics , Nasal Mucosa , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL